Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Food Res Int ; 187: 114416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763666

RESUMO

An amaranth beverage (AB) was subjected to a simulated process of dynamic gastrointestinal digestion DIDGI®, a simple two-compartment in vitro dynamic gastrointestinal digestion system. The structural changes caused to the proteins during digestion and the digesta inhibitory capacity of the angiotensin converting enzyme (ACE) were investigated. In gastric compartment the degree of hydrolysis (DH) was 14.7 ± 1.5 % and in the intestinal compartment, proteins were digests in a greater extent (DH = 60.6 ± 8.4 %). Protein aggregation was detected during the gastric phase. The final digesta obtained both at the gastric and intestinal level, showed ACE inhibitory capacity (IC50 80 ± 10 and 140 ± 20 µg/mL, respectively). Purified fractions from these digesta showed even greater inhibitory capacity, being eluted 2 (E2) the most active fraction (IC50 60 ± 10 µg/mL). Twenty-six peptide sequences were identified. Six of them, with potential antihypertensive capacity, belong to A. hypochondriacus, 3 agglutinins and 3 encrypted sequences in the 11S globulin. Results obtained provide new and useful information on peptides released from the digestion of an amaranth based beverage and its ACE bioactivity.


Assuntos
Amaranthus , Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Bebidas , Digestão , Amaranthus/química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrólise , Peptidil Dipeptidase A/metabolismo
2.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008714

RESUMO

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Assuntos
Proteínas de Escherichia coli , Mucosite , Probióticos , Camundongos , Humanos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamação , Probióticos/uso terapêutico
3.
Food Res Int ; 173(Pt 1): 113242, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803555

RESUMO

Protein digestibility, a key indicator of dietary protein quality for human nutrition, can be estimated using an in vitro digestion model, however its definition and determination remain variable across studies. The present study aimed to determine the contribution of the endogenous nitrogen (N) to the plant and animal protein digestibility values obtained in vitro. 15N-labelled gluten and caseins (4, 8 and 16 % of the model meal) were used to differentiate dietary and endogenous N and were digested using the INFOGEST in vitro digestion model with no oral phase. The dietary and endogenous N were measured before and during digestion after centrifugation and 10 kDa ultrafiltration. The proteolysis degree was measured by the OPA method. The endogenous and dietary N were determined by elemental analyser coupled with isotopic ratio mass spectrometry. Apparent and true digestibility were determined and values of 135, 92 and 71 % for apparent vs. 78, 69, 60 % for true digestibility were obtained for 4, 8 and 16 % dietary protein level, respectively, with a significant effect of protein level. Differences between apparent and true digestibility pointed out the important contribution of the endogenous nitrogen. Our results showed that 40 % of the N below 10 kDa, i.e., the digestible fraction, were from endogenous origin (i.e. from the pancreatin) and was even present before digestion. An average value of 27 % for pancreatin N autolysis was estimated independently of the protein levels or sources. The use of 15N-labelled protein to evaluate in vitro protein digestibility highlighted the important contribution of the endogenous N, in particular when low dietary protein solution (4 %) are digested. This gives new keys to overcome drawbacks of in vitro models for determining protein digestibility.


Assuntos
Aminoácidos , Nitrogênio , Animais , Humanos , Nitrogênio/análise , Aminoácidos/análise , Pancreatina , Digestão , Proteínas Alimentares/metabolismo
4.
Food Res Int ; 169: 112883, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254331

RESUMO

Infant formula (IF) is a complex matrix requiring numerous ingredients and processing steps. The objective was to understand how the quality of protein ingredients impacts IF structure and, in turn, their kinetics of digestion. Four powdered IFs (A/B/C/D), based on commercial whey protein (WP) ingredients, with different protein denaturation levels and composition (A/B/C), and on caseins with different supramolecular organisations (C/D), were produced at a semi-industrial level after homogenization and spray-drying. Once reconstituted in water (13 %, wt/wt), the IF microstructure was analysed with asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractometer, transmission electron microscopy and electrophoresis. The rehydrated IFs were subjected to simulated infant in vitro dynamic digestion (DIDGI®). Digesta were regularly sampled to follow structural changes (confocal microscopy, laser-light scattering) and proteolysis (OPA, SDS-PAGE, LC-MS/MS, cation-exchange chromatography). Before digestion, different microstructures were observed among IFs. IF-A, characterized by more denatured WPs, presented star-shaped mixed aggregates, with protein aggregates bounded to casein micelles, themselves adsorbed at the fat droplet interface. Non-micellar caseins, brought by non-micellar casein powder (IF-D) underwent rearrangement and aggregation at the interface of flocculated fat droplets, leading to a largely different microstructure of IF emulsion, with large aggregates of lipids and proteins. During digestion, IF-A more digested (degree of proteolysis + 16 %) at 180 min of intestinal phase than IF-C/D. The modification of the supramolecular organisation of caseins implied different kinetics of peptide release derived from caseins during the gastric phase (more abundant at G80 for IF-D). Bioactive peptide release kinetics were also different during digestion with IF-C presenting a maximal abundance for a large proportion of them. Overall, the present study highlights the importance of the structure and composition of the protein ingredients (WPs and caseins) selected for IF formulation on the final IF structure and, in turn, on proteolysis. Whether it has some physiological consequences remains to be investigated.


Assuntos
Caseínas , Fórmulas Infantis , Humanos , Caseínas/química , Proteólise , Fórmulas Infantis/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Digestão
5.
Food Res Int ; 167: 112716, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087275

RESUMO

Due to the lower efficiency of the elderly digestion system, new formulations are needed in order to increase the bioaccessibility of macronutrients. The aim of the work was to evaluate the effect of the process of protein sources production using either liquid (F2) vs spray dried milk proteins (F1/F3) and the source of lipids (vegetable oil (F1) vs mix of vegetable oil + bovine milk cream (F2/F3)) ingredients on the macronutrient digestion of three experimental elderly formulas. The dynamic in vitro digestion model DIDGI®, was adapted to simulate the digestive conditions of the elderly. An exhaustive review of the literature was carried out in order to simulate as closely as possible the elderly digestive parameters and constituted the starting point towards a consensus in vitro digestion model that will be proposed soon by the INFOGEST scientific network. The three experimental formulas (F1/F2/F3) differing by the composition and process applied were submitted to the DIDGI® dynamic in vitro digestion over four hours using parameters adapted to the elderly. The three formulas were compared in terms of proteolysis and lipolysis. A slight impact of the process (liquid vs spray-dried) on the degree of proteolysis at the end of digestion was observed with 50.8% for F2 compared to 56.8% for F1 and 52.9% for F3 with<5% of difference between the 3 formulas. Concerning the degree of lipolysis, the addition of bovine cream led to a lesser extent of lipolysis with 63.7 and 60.2% for F2 and F3 respectively versus 66.3% for F1 (containing only vegetable oil). Our results highlighted the beneficial input of the milk fat with a higher level of phospholipids and a lower ω6/ω3 PUFA ratio and can be a good alternative to the use of the vegetable fat in drinks for elderly people.


Assuntos
Digestão , Gastroenteropatias , Humanos , Idoso , Animais , Leite/metabolismo , Lipólise , Óleos de Plantas/metabolismo
6.
Food Res Int ; 164: 112351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737940

RESUMO

Limited studies in the literature have compared in vitro dynamic and in vitro static protocols for modelling the gastric digestive process of food systems. This experiment explores the differences between two different in vitro approaches to the devolution of a transglutaminase-induced acid gel (TG, pH 5.1-5.3) and rennet-induced gel (RG, pH 6.5-6.7). Gels were exposed to a simulated oral phase, followed by either the dynamic DIDGI® or static COST action INFOGEST protocol to simulate gastric conditions. Protein hydrolysis was evident from 15 min onwards for TG exposed to the dynamic protocol where levels continued to increase at a steady rate. In contrast, RG exhibited a notable lag-phase before levels increased from around 60 min onwards. Under the static protocol, protein hydrolysis was observed for both TG and RG upon exposure to the gastric environment which continued to increase over time. Despite these differences, similar levels of protein hydrolysis were found for TG and RG at the gastric endpoint using either protocol demonstrating that both the dynamic DIDGI® and static COST action INFOGEST methods provide a suitable and comparable environment for the in vitro digestion of casein protein under simulated gastric conditions.


Assuntos
Caseínas , Transglutaminases , Caseínas/metabolismo , Digestão , Géis
7.
Food Res Int ; 162(Pt B): 112112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461347

RESUMO

This study compared the bioaccessibility of docosahexaenoic acid (DHA) provided encapsulated or unencapsulated within a food matrix. DHA oil was composed of DHA-enriched triacylglycerols prepared as Pickering emulsion by encapsulation with heat-denatured whey protein isolate particles and then incorporated into homogenized liquid egg to get omelets. The effect of encapsulation was analyzed by using a static in vitro digestion model of the adult, which digestive fluid enzymes have also been characterized by proteomics. First, the size of lipid droplets was shown to be smaller and uniformly dispersed in omelets with encapsulated-DHA oil compared to non-encapsulated-DHA oil. Distribution of droplets was more regular with encapsulated-DHA oil as well. As a consequence, we showed that encapsulating DHA oil promoted the hydrolysis by pancreatic lipase during the intestinal phase. A larger proportion of DHA enriched-triacylglycerols was hydrolyzed after two hours of digestion, leading to a greater release in free DHA. Thus, only 32% of DHA remained esterified in the triacylglycerols with encapsulated-DHA oil, compared to 43% with non-encapsulated-DHA oil. The DHA in free form ultimately represented 52% of the total DHA with encapsulated-DHA oil, compared to 40% with non-encapsulated-DHA oil. Finally, our results showed that as much DHA was released after one hour of intestinal digestion when the DHA oil was encapsulated as after two hours when the DHA oil was not encapsulated. Therefore, DHA bioaccessibility was significantly improved by encapsulation of DHA oil in omelets.


Assuntos
Ácidos Docosa-Hexaenoicos , Temperatura Alta , Adulto , Humanos , Proteínas do Soro do Leite , Emulsões , Triglicerídeos
8.
Food Chem ; 395: 133579, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35780666

RESUMO

Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. This study sought to establish whether HM supplemented with an experimental donkey milk-derived fortifier (DMF) or a commercial bovine milk-derived fortifier (BMF) affected digestion, using an in vitro dynamic system at the preterm stage. Particle size in gastric phase was higher in DMF than in BMF, due to protein aggregates surrounding lipid globules. Before digestion, BMF, with its extensively hydrolysed proteins, had a higher degree of proteolysis (30%) than DMF (11%), which contained intact proteins. After digestion, this difference was reduced concomitantly to a similar net degree of proteolysis (33%). DMF, with a higher proportion of ω3, resulted in a lower ω6/ω3 free PUFA ratio than BMF throughout digestion, although the final degree of lipolysis was similar (54%). In summary, DMF could represent a better source of proteins and lipids for the preterm infant.


Assuntos
Recém-Nascido Prematuro , Leite Humano , Animais , Digestão , Equidae , Alimentos Fortificados , Humanos , Lactente , Recém-Nascido , Lipólise , Leite Humano/química , Proteólise
9.
Front Nutr ; 8: 615248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718418

RESUMO

Breast milk is the gold standard in neonatal nutrition, but most infants are fed infant formulas in which lipids are usually of plant origin. The addition of dairy lipids and/or milk fat globule membrane extracts in formulas improves their composition with beneficial consequences on protein and lipid digestion. The probiotic Lactobacillus fermentum (Lf) was reported to reduce transit time in rat pups, which may also improve digestion. This study aimed to investigate the effects of the addition of dairy lipids in formulas, with or without Lf, on protein and lipid digestion and on gut physiology and metabolism. Piglets were suckled from postnatal days 2 to 28, with formulas containing either plant lipids (PL), a half-half mixture of plant and dairy lipids (DL), or this mixture supplemented with Lf (DL+Lf). At day 28, piglets were euthanized 90 min after their last feeding. Microstructure of digesta did not differ among formulas. Gastric proteolysis was increased (P < 0.01) in DL and DL+Lf (21.9 ± 2.1 and 22.6 ± 1.3%, respectively) compared with PL (17.3 ± 0.6%) and the residual proportion of gastric intact caseins decreased (p < 0.01) in DL+Lf (5.4 ± 2.5%) compared with PL and DL (10.6 ± 3.1% and 21.8 ± 6.8%, respectively). Peptide diversity in ileum and colon digesta was lower in PL compared to DL and DL+Lf. DL and DL+Lf displayed an increased (p < 0.01) proportion of diacylglycerol/cholesterol in jejunum and ileum digesta compared to PL and tended (p = 0.07) to have lower triglyceride/total lipid ratio in ileum DL+Lf (0.019 ± 0.003) as compared to PL (0.045 ± 0.011). The percentage of endocrine tissue and the number of islets in the pancreas were decreased (p < 0.05) in DL+Lf compared with DL. DL+Lf displayed a beneficial effect on host defenses [increased goblet cell density in jejunum (p < 0.05)] and a trophic effect [increased duodenal (p = 0.09) and jejunal (p < 0.05) weights]. Altogether, our results demonstrate that the addition of dairy lipids and probiotic Lf in infant formula modulated protein and lipid digestion, with consequences on lipid profile and with beneficial, although moderate, physiological effects.

10.
Food Chem ; 340: 128154, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010641

RESUMO

Numerous bacteria are responsible for hydrolysis of proteins during cheese ripening. The raw milk flora is a major source of bacterial variety, starter cultures are needed for successful acidification of the cheese and proteolytic strains like Lactobacillus helveticus, are added for flavor improvement or acceleration of ripening processes. To study the impact of higher bacterial diversity in cheese on protein hydrolysis during simulated human digestion, Raclette-type cheeses were produced from raw or heat treated milk, with or without proteolytic L. helveticus and ripened for 120 days. Kinetic processes were studied with a dynamic (DIDGI®) in vitro protocol and endpoints with the static INFOGEST in vitro digestion protocol, allowing a comparison of the two in vitro protocols at the level of gastric and intestinal endpoints. Both digestion protocols resulted in comparable peptide patterns after intestinal digestion and higher microbial diversity in cheeses led to a more diverse peptidome after simulated digestion.


Assuntos
Queijo/microbiologia , Proteínas do Leite/metabolismo , Leite/microbiologia , Aminoácidos/análise , Animais , Queijo/análise , Cromatografia Líquida de Alta Pressão , Digestão , Microbiologia de Alimentos , Humanos , Lactobacillus helveticus/genética , Lactobacillus helveticus/crescimento & desenvolvimento , Lactobacillus helveticus/metabolismo , Espectrometria de Massas , Leite/metabolismo , Peptídeos/análise , Proteólise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
11.
Food Res Int ; 138(Pt A): 109752, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292935

RESUMO

Small intestinal mucus transport of food-derived particulates has not been extensively studied, despite mucus being a barrier nutrients need to cross before absorption. We used complex dispersions of digesta obtained from simulated, dynamic gastrointestinal digestion of yogurt to examine the penetrability of human and porcine mucus to the particles formed of lipolysis products. Quantitative, time-lapse confocal microscopy revealed a sieve-like behaviour of the pig jejunal and ileal mucus. The digesta diffusivity decreased significantly over the first 30 min of mucus penetration, and then remained constant at ca. 5 × 10-12 m2 s-1 (approx. 70% decrease from initial values). A non-significantly different penetrability was recorded for the ileal mucus of adult humans. The digesta diffusion rates in neonatal, jejunal mucus of 2 week old piglets were 5-8 times higher than in the three different types of adult mucus. This is the first report that validates the mucus of fully-grown pigs as a human-relevant substitute for mucus permeation studies of nutrients/bio-actives and/or complex colloidal dispersions (e.g., post-digestion food particulates, orally-administrated delivery systems).


Assuntos
Mucosa Intestinal , Lipídeos , Adulto , Animais , Difusão , Digestão , Humanos , Muco , Suínos
12.
Food Chem ; 329: 126927, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516717

RESUMO

Donor human milk, pasteurised for safety reasons, is the first alternative for feeding preterm infants when mothers' own milk is unavailable. Breastmilk pasteurisation impact on lipid digestion and absorption was evaluated by a static in vitro digestion model for preterm infants coupled with intestinal absorption using Caco-2/TC7 cells. Lipid absorption was quantified by digital image analysis of lipid droplets, by measurement of basolateral triglyceride concentration and by analysing the expression of major genes involved. After in vitro digestion, lipolysis extent was 13% lower in pasteurised human milk (PHM) than in raw human milk (RHM). In Caco-2/TC7 cells, the number of lipid droplets was identical for both milk types, while the mean droplet area was 17% smaller with PHM. Altogether, pasteurisation decreased the pre-lipolysis of human milk. This initial difference in free fatty acid amount was only partially buffered by the subsequent processes of in vitro digestion and cellular lipid absorption.


Assuntos
Lipídeos/química , Leite Humano/química , Linhagem Celular , Digestão , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Mucosa Intestinal , Intestinos , Lipólise , Pasteurização
13.
Food Chem ; 328: 127126, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492605

RESUMO

The high-temperature short-time (HTST, 72 °C, 15 s) pasteurization of human milk (HM) has been proposed as an alternative to the Holder method (HoP, 62.5 °C, 30 min), to increase the preservation of bioactive compounds. We have investigated the impact of HTST and HoP pasteurization on the gastrointestinal kinetics of human milk, using a dynamic in vitro system in a preterm newborn model. An increased protein aggregation on the surface of fat globules following pasteurization, albeit to a lesser extent in HTST than in HoP, was observed. Despite relevant differences in the undigested milk samples, both pasteurization methods led to similar proteolytic patterns, while raw HM presented a higher native lactoferrin content throughout digestion. The slightly decreased amino acid release following HoP, with respect to HTST and raw HM, indicated that peptidomic analysis, which is currently underway, might provide interesting insights on the differential digestive kinetics of differently pasteurized HM.


Assuntos
Leite Humano/química , Pasteurização/métodos , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lactoferrina/química , Espectrometria de Massas , Proteólise , Fatores de Tempo
14.
Foods ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245044

RESUMO

Infant formulas (IFs) are used as substitutes for human milk and are mostly based on cow milk proteins. For sustainability reasons, animal protein alternatives in food are increasingly being considered, as plant proteins offer interesting nutritional and functional benefits for the development of innovative IFs. This study aimed to assess how a partial substitution (50%) of dairy proteins with faba bean and pea proteins influenced the digestibility of IFs under simulated dynamic in vitro digestion, which were set up to mimic infant digestion. Pea- and faba bean-based IFs (PIF and FIF, respectively) have led to a faster aggregation than the reference milk-based IF (RIF) in the gastric compartment; that did not affect the digesta microstructure at the end of digestion. The extent of proteolysis was estimated via the hydrolysis degree, which was the highest for FIF (73%) and the lowest for RIF (50%). Finally, it was apparent that in vitro protein digestibility and protein digestibility-corrected amino acid score (PDCAAS)-like scores were similar for RIF and FIF (90% digestibility; 75% PDCAAS), but lower for PIF (75%; 67%). Therefore, this study confirms that faba bean proteins could be a good candidate for partial substitution of whey proteins in IFs from a nutritional point of view, provided that these in vitro results are confirmed in vivo.

15.
Food Funct ; 11(2): 1702-1720, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32039430

RESUMO

The link between food and human health is increasingly a topic of interest. One avenue of study has been to assess food disintegration and interactions within the gastrointestinal tract. In vitro digestion models have been widely used to overcome the constrictions associated with in vivo methodology. The COST Action INFOGEST developed an international, harmonised protocol for static simulation of digestion in the upper gastrointestinal tract of adults. This protocol is widely used; however, it is restricted to providing end-point assessment without considering the possible structural changes. On the other hand, there are dynamic models that provide more physiologically relevant data but are expensive and difficult to access. There is a gap between these models. The method outlined in this article provides an intermediate model; it builds upon the harmonised static model and now includes crucial kinetic aspects associated with the gastric phase of digestion, including gradual acidification, fluid and enzyme secretion and emptying. This paper provides guidance and standardised recommendations of a physiologically relevant semi-dynamic in vitro simulation of upper gastrointestinal tract digestion, with particular focus on the gastric phase. Adaptations of this model have already been used to provide kinetic data on nutrient digestion and structural changes during the gastric phase that impact on nutrient absorption. Moreover, it provides a simple tool that can be used in a wide range of laboratories.


Assuntos
Digestão/fisiologia , Tecnologia de Alimentos/métodos , Trato Gastrointestinal/fisiologia , Modelos Biológicos , Consenso , Desenho de Equipamento , Tecnologia de Alimentos/instrumentação , Suco Gástrico/fisiologia , Humanos , Cinética
16.
Biochimie ; 169: 95-105, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31866313

RESUMO

Milk fat globule membrane conditions the reactivity and enzymatic susceptibility of milk lipids. The use of bovine membrane extracts to make infant formulas more biomimetic of human milk has been suggested recently. A comparison of the physico-chemical behavior of human and bovine milk membrane extracts and their interaction with gastric lipase is here undertaken using biophysical tools. Milk membrane extracts (70% of polar lipids) were obtained either pooling of mature human milk (n = 5) or bovine buttermilk. Human extract contained more anionic glycerophospholipids, less phosphatidylethanolamine and more unsaturated fatty acids (57% versus 46%) than bovine extract. Human extract presented a higher compressibility, with slower increase of surface pressure, than bovine extract. Micronic liquid condensed (LC) domains were evidenced in both extracts at 10 mN/m, but the evolution differs upon compression. Upon gastric lipase addition, an adsorption preference for liquid expanded phase (LE) was observed for both extracts. However, insertion was more homogeneous in terms of height level in human extract and impacted less its lipid lateral organization than in bovine extract. Both membrane extracts share close physico-chemical properties, however human membrane higher compressibility may favour gastric lipase insertion and higher interfacial reactivity in gastric conditions.


Assuntos
Fórmulas Infantis/química , Lipase/química , Bicamadas Lipídicas/química , Leite Humano/química , Leite/química , Adsorção , Animais , Bovinos , Colesterol/química , Misturas Complexas/química , Ácidos Graxos Insaturados/química , Glicerofosfolipídeos/química , Glicolipídeos , Glicoproteínas , Humanos , Lactente , Gotículas Lipídicas , Fosfatidiletanolaminas/química , Pressão , Especificidade da Espécie , Esfingomielinas/química , Estômago/química , Estômago/enzimologia , Propriedades de Superfície , Triglicerídeos/química
17.
Food Chem Toxicol ; 129: 405-423, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31063834

RESUMO

The current allergenicity assessment of novel proteins is based on the EFSA GMO guidance. Recently, EFSA launched a new guidance document on allergenicity assessment of GM plants (2017). This document describes, amongst other topics, the new scientific and regulatory developments on in vitro protein digestibility tests. The EFSA GMO Panel stated that for in vitro protein digestibility tests, additional investigations are needed before any additional recommendation in the form of guidance can be provided. To this end, an interim phase is considered necessary to evaluate the revisions to the in vitro gastrointestinal digestion test, proposed by EFSA. This prompted the establishment of a joint workshop through two COST Action networks: COST Action ImpARAS and COST Acton INFOGEST. In 2017, a workshop was organised to discuss the relevance of digestion in allergenicity risk assessment and how to potentially improve the current methods and readouts. The outcome of the workshop is that there is no rationale for a clear readout that is predictive for allergenicity and we suggest to omit the digestion test from the allergenicity assessment strategy for now, and put an effort into filling the knowledge gaps as summarized in this paper first.


Assuntos
Alérgenos/imunologia , Proteínas Alimentares/metabolismo , Digestão , Hipersensibilidade Alimentar/imunologia , Medição de Risco/métodos , Proteínas Alimentares/imunologia , Humanos
18.
Nat Protoc ; 14(4): 991-1014, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886367

RESUMO

Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.


Assuntos
Materiais Biomiméticos/metabolismo , Ingredientes de Alimentos/análise , Intestinos/enzimologia , Modelos Biológicos , Boca/enzimologia , Estômago/enzimologia , Aminoácidos/análise , Aminoácidos/química , Bile/enzimologia , Materiais Biomiméticos/química , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Ensaios Enzimáticos/normas , Ácidos Graxos/análise , Ácidos Graxos/química , Alimentos , Suco Gástrico/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos/análise , Oligossacarídeos/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Saliva/enzimologia
19.
Food Res Int ; 118: 32-39, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898349

RESUMO

In the frame of the COST action INFOGEST, a static in vitro digestion protocol has been elaborated aiming at the improvement of data comparability by harmonizing the experimental conditions. The success in harmonization was confirmed with inter-laboratory trials using skim milk powder as a standardized model food. Moreover, the physiological relevance of the gastric and intestinal endpoints of the static digestion protocol was demonstrated in a pig in vivo trial, with the same skim milk powder and samples collected from different sections of the digestive tract, as well as in a human study with from jejunal effluents. In vivo, digestion is a dynamic process influenced by peristalsis and by the gradual secretion of enzymes and juices and the dwell time of the food. To mimic these physiological mechanisms, dynamic in vitro digestion protocols are widely used. Until now, the differences of protein hydrolysis taking place during dynamic and static in vitro digestion have not been investigated. In this study, the gradual hydrolysis of the main milk proteins present in skim milk powder was digested with the dynamic DIDGI®-system using adult digestion protocol and the static harmonized INFOGEST method. Protein hydrolysis was analyzed by gel electrophoresis, peptide patterns were measured with mass spectrometry, and free amino acids with high pressure liquid chromatography. The peptide patterns at the gastric and intestinal endpoints of in vitro digestion showed a good approximation to the in vivo results from pigs. Moreover, gradual peptide generation was comparable in both in vitro digestion conditions. However, the dynamic protocol reflected the physiological situation better at the level of free amino acid release. Nonetheless, in both in vitro digestion protocols, absorption of free amino acids is not simulated, and they are therefore limited in reflecting the in vivo situation at this level.


Assuntos
Digestão/fisiologia , Trato Gastrointestinal/metabolismo , Proteínas do Leite/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Hidrólise , Técnicas In Vitro , Intestinos , Jejuno/metabolismo , Cinética , Espectrometria de Massas , Leite/metabolismo , Modelos Biológicos , Peptídeos/química , Peptídeos/isolamento & purificação , Estômago , Suínos
20.
Food Chem ; 281: 294-303, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658760

RESUMO

Holder pasteurization (62.5 °C, 30 min) of human milk denatures beneficial proteins. The present paper aimed to assess whether this can affect the kinetics of peptide release during digestion at the preterm stage. Raw (RHM) or pasteurized (PHM) human milk were digested in triplicates using an in vitro dynamic system. Mass spectrometry and multivariate statistics were conducted. Pre-proteolysis occurred mostly on ß-casein, for which cumulative peptide abundance was significantly greater in PHM over 28% of the hydrolysed sequence. Eight clusters resumed the kinetics of peptide release during digestion, which differed on seven clusters (69% of the 1134 peptides). Clusters associated to the heat-denaturated proteins, lactoferrin and bile salt-stimulated lipase, presented different kinetics of release during digestion, unlike that for ß-casein. Some bioactive peptides from ß-casein presented significant different abundances between PHM and RHM before digestion (1-18, 185-211) or in during intestinal digestion (154-160, 161-166). Further physiological consequences should be investigated.


Assuntos
Leite Humano/química , Pasteurização , Ácidos e Sais Biliares/análise , Caseínas/análise , Análise por Conglomerados , Digestão , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido Prematuro/crescimento & desenvolvimento , Lactoferrina/análise , Proteínas do Leite/análise , Peptídeos/análise , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA